
Theoret. chim. Acta (Berl.) 22, 1--10 (1971) 
�9 by Springer-Verlag 1971 

Commentationes 

A Comparison of One-Electron Properties Calculated 
from Gaussian SCF and CI Wavefunctions 

R. E. KARI* and I. G. CSIZMADIA 
Department of Chemistry, University of Toronto, Toronto 181, Canada 

Received January 25, 1971 

Ground state LCAO-MO-SCF single- and multiconfiguration wavefunctions of NH 3 and CH~, 
constructed from a large contracted Gaussian basis set, have been analyzed in terms of one-electron 
expectation values. 

Both sets of values agree fairly well with the experimental data in the case of NH 3. It is expected 
therefore that the results obtained for CH~ are also reliable. 

Einfach- und Mehrfachdeterminanten-LCAO-MO-SCF-Funktionen for NH 3 und CH~ wurden 
zur Berechnung von Einelektroneneigenschaften herangezogen. Die Obereinstimmung ist in beiden 
F~illen bei NH 3 gut, man darf daher fiir CH~ dasselbe erwarten. 

Introduction 

The ultimate goal of any computed wavefunction must be the accurate predic- 
tion of an experimentally measurable value. To date, the most often calculated 
expectation value of an observable has been the total energy. But, as a criterion of 
the quality of an approximate wavefunction, the calculated energy may be only a 
crude measure. It is quite conceivable, and often true in practice, that for certain 
critical values of the electron co-ordinates, the error in the wavefunction is con- 
siderably larger than the error in total energy. 

Thus, in order to gain some insight into the quality of a wavefunction, one 
must calculate many different expectation values and compare these with both 
calculated and experimentally measured values. Because the wavefunctions used 
here do not describe vibrational and rotational motion, relativistic corrections or 
coupling with nuclear moments, etc., the calculated expectation values should 
not be expected to be identical to the corresponding experimental values. How- 

Table 1. Details of the NH s and CH 3 wavefunctions 

Molecule Rx-H 

XHa 

Out-of-plane No. Gaussian functions Energy (No. configurations) 

angle primitive constructed SCF CI 

NH3 1.913 22.14 ~ 73 36 - 56.21171(1) -56.37470(918) 
CH 3 2.090 23.5 ~ 67 36 -39.51292(1) -39.66450(911) 

* Present address: Department of Chemistry, Laurentian University, Sudbury, Ontario, Canada. 
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ever, by assuming that these corrections to the electronic wavefunction are mini- 
mal, these comparison can be made. 

The SCF and CI wavefunctions for NH3 and CH~ have been described 
previously [-1], but for convenience some characteristic data are summarized in 
Table 1. 

Occupational Numbers 

The natural orbitals and one-electron density matrices were computed for 
NH 3 and CH~ in their minimum energy conformations. The occupation numbers 
of the principal natural orbitals are listed in Table 2. The traces of the density 
matrix, for both molecules, agreed with the number of electrons to six significant 
figures. 

Table 2. Occupation numbers of the principal natural orbitals of NH 3 and CH~ 

Orbital Occupat ion number  
N H  3 CH3 

l a  1 0.99998 0.99999 
2a I 0.99246 0.98954 
3a 1 0.98722 0.98144 
le  0.98528 0.98434 

As may be seen from the occupation numbers in Table 2, the occupation 
numbers of CH3 have decreased more than those of NH3. So, if the CI energy is 
expressed as a percentage of the total correlation energy, it might be expected that 
this percentage would be greater for CH3 than for NH3. Such is not the case in 
the present calculations, where the percentage for CH3 is 48.7 % and the percentage 
for NH3 is 49.5 %. However, it is probable that the estimated correlation energy of 
CH3 (-0.310 hartree) is too large, due to the lack of both an experimental zero 
point energy and an accurate Hartree-Fock limit. 

Multipole Moments 

The dipole moment is the only multipole moment of NH3 which has been 
experimentally measured. Many SCF calculations have been used to calculate the 
dipole moment also; but, only a few of these calculations have been sufficiently 
extensive to include the other moments. The dipole (#), second (Q J ,  and related 
quadrupole (0=), as well as the third (R~,y) and the related octopole (~2~J moments, 
as calculated from the present SCF and CI wavefunctions for NH3 and CH~ are 
tabulated in Table 3. 

The total dipole moment is invariant to the choice of the origin relative to 
which the dipole is calculated. None of the other moments are invariant to the 
choice of the origin; hence, by convention, the origin was chosen as the centre of 
mass (-0.12804 bohr along the z axis for NH 3 and -0.167614 bohr along the 
z axis for CHj). The calculated dipole moments of both NH 3 and CH~ increased 
when electron correlation was included in the wave function (cf. Table 3) and this 
increase, at least for NH 3, was a convergence to the experimental value. Apparently, 
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T a b l e  3. Moments of the charge distribution of N H  3 as calculated from the S C F  and C I  wavefunctions a 

M o m e n t  N H a  C H ~  

S C F  C I  E x p t  S C F  C I  

,u* - 1.9463 - 1.9187 b - 1.4820 d - 1 .4710 - 1 .4570 

Q:,:,r - 6 .2229 - 6 .3428 - -  - 11.8878 - 11 .9782 

Q ~  - 8 .8036 - 8 .8329 - -  - 16.0433 - 16 .1372 

( r  2 ) f 7 .3899 7 .4459 b 7 .1406 b 11.7960 --  11.8537 

O ~  ~ - - 2 . 5 8 0 7  - -2 .4901  b - - 1 . 0  ~ --  4 .1554  --  4 .1577  

Ryry h 0 .9175 0 .8514  " - -  --  0 .2739 -- 0 .3108 

R ~  - 0 . 5 8 2 0  - 0 . 5 5 6 0  - -  - 2 .7776 - 2 .8300 

R ~  - 0 . 6 2 3 7  - 0 . 5 6 9 4  - -  - 0 .5062  - 0 .4976  

R~ h - 1.8296 - 1.6949 - -  - 3.7901 - 3 .8252 

f2ryr h 2 .2936  2 .1326  - -  - 0 .6849 - 0 .7643 

f 2 ~  1.2893 1.1524 - -  - 1.2588 - 1.3371 

a S e c o n d  a n d  t h i r d  m o m e n t s  a r e  r e l a t i v e  to  t h e  c e n t r e  o f  m a s s .  

b T h e s e  v a l u e s  r e p o r t e d  b y  H a r r i s o n  [ 5 ]  to  b e  - 2 . 1 1 ,  + 7 . 5 7 7  a n d  - 3 . 1 4  r e s p e c t i v e l y .  

c D i p o l e  m o m e n t  in  D e b y e ,  1 a u  = 2 .54154  D e b y e .  

d Ref .  [ 20 ] .  

S e c o n d  m o m e n t s  a n d  q u a d r u p o l e  m o m e n t  in  u n i t s  o f  10 . 2 6  e s u - c m  2, 1 a u  = 1.344911 x 10 . 2 6  

e s u / c m  2 . 

f I n  u n i t s  o f  10 - 1 6  c m  2, 1 a u  = 0 . 2 8 0 0 1 6  x 10 - 1 6  c m  2, ( r 2 ) C H ~  n u c l e a r =  3.5055. 

g Ref .  [ 7 ] .  

h T h i r d  m o m e n t  a n d  o c t o p o l e  m o m e n t  in  u n i t s  o f  1 0 -  a4 e s u _ c m  3,1 a u  = 0 .711688  x 1 0 -  3 ,  e s u / c m  3. 

the dipole moment does approach the exact value as the wavefunction is improved 
with respect to total energy. 

The second moment (Q~) is a measure of the absolute size of the charge 
distribution in each direction; whereas, the quadrupole moment is both a measure 
of size and shape (deviation from spherical symmetry). For the particular case 
where a molecule possesses C3~ symmetry, 0,~ = 0yy = -1/20~z, where 0~g is as 
defined by Buckingham [2] 

0~ = 1/2 (3 Q~ - Q~ ~,~). 

Physical intuition might suggest that the calculated SCF charge distribution 
would expand when the wavefunction accounts for the correlation effect. Table 3 
shows that this hypothesis is true for the CI wavefunctions for NH 3 and CH~. 
Also, when Franchine and Vergani [3] computed second moments for NH 3 from 
an SCF wavefunction with a minimum STO basis set (Q~=-4.2777,  Q~ 

= - 5.3994) and from the resulting group functions (Q~ = 4.3267, Qzz = - 5.3994), 
they found that the inclusion of a correlation factor increased the size of the charge 
distribution. Recent group function (i.e. geminal) calculations [4], with the same 
GTF basis as used here, also showed an increase in the second moments. Thus, 
for inexact wavefunctions, the change in the size of the charge distribution appears 
to be independent of the method of introducing correlation and does confirm the 
intuitive expansion of the charge distribution. But, judging from the quadrupole 
moments, this expansion in charge distribution occurs with a concomittant 
increase in its spherical symmetry. 
1" 
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Previous SCF calculations [5, 6] have shown that the calculated quadrupole 
moment was strongly influenced by the choice of the gaussian basis set. In one of 
these calculations 1-5], the smallest basis set gave poorer approximations of both 
the experimental dipole moment and the total energy; yet, it gave the best ap- 
proximation of the recommended value [7] of the quadrupole moment. However, 
considering the relative accuracies of the present calculations, the recommended 
value of - 1.0 for the quadrupole moment does appear to be too high. 

Magnetic Susceptibility 

Van Vleck has shown [8] that the average molar susceptibility of a molecule 
with no resultant angular momentum is proportional to the sum of a diamagnetic 
term (depending only on the ground state wavefunction) and a second-order or 
paramagnetic term (depending on all the excited electronic states). Quantum 
mechanically, the average diamagnetic susceptibility is directly proportional to 
the value of ( r  2)  

Zany = ( -  eZ N/6 mc 2) ([r(cm)] 2) 

= 0.7922765 x 10 -6 ([r(bohr)]2). 

The calculated molar diamagnetic susceptibility (in units of ppm) for NH 3 was 
-21.07 from the CI wavefunction and -20.91 from the SCF wavefunction. The 
experimentally determined [9] total susceptibility of gaseous ammonia is Z 
= - 16.3 ppm. From spectroscopic data the paramagnetic susceptibility has been 
calculated as ZP= +4.3 ppm [10]. Using the additivity formula, Z a = Z - Z  p 
= - 2 0 . 6  ppm, which compared favourably with the above calculated values. 
This result also compared favourably with Za= -21.6, which was calculated by 
Moccia 1-11], and Z a = - 20.95, calculated by Harrison [15]. However, the excellent 
agreement of the magnetic susceptibility (which is represented by a "r 2'' operator) 
with experiment does not concur with the poor agreement of the quadrupole 
moment. The quadrupole moment is presumably a more sensitive quantity since it 
depends on the sum of both electronic and nuclear contributions. But, the accuracy 
of the present calculations with respect to the magnetic susceptibility, does again 
suggest that the recommended value [-7] of the quadrupole moment is incorrect. 

Potential and Magnetic Shielding 

Along with the one-electron energy, the potentials ((l/r)) at the proton F[H], 
and at the heavy atom FIN] and F[C], as determined from the SCF and CI wave- 
functions, are tabulated in Table 4. The only experimental quantity to which any 
of these values could be compared was the average diamagnetic shielding at 
the proton. The computed average diamagnetic shielding at the proton for NH 3 
was  : 

tr~v [H]r~i3 = (e2/3 m c2) (1/r)  
= 17.74959 x 10-6( i / r )  

= 95.50 ppm for the SCF wavefunction and 
= 95.45 ppm for the CI wavefunction. 
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Table 4. Potentials" at the proton (F[H]) and the heavy atom (FIX]) 

Component F[H] F[X] 

SCF CI SCF CI 

NH3 CH3 NH3 CH3 NH3 CH 3 NH3 CH~- 

Nuclear 4.3104 3.4733 4.3104 3.4733 1.5680 1.4354 
Electronic -5.3804 -4.8845 -5.3774 -4.8812 -19.9573 - 16.4786 
Total -1.0701 -1.4112 -1.0670 -1.4080 -18.3892 -15.0432 
V[1] b -155.8432 -113.5251 -155.8592 -113.5867 

1.5680 1.4354 
-19.9610 -16.4905 
--18.3930 -15.0551 

" In au = 9.07618 x 10 -2 esu/cm. 
b One-electron potential energy, VI i i  =ZxF[X  ] + 3F[H]. 

The experimentally measured total proton magnetic shielding in NH 3 [12] 
is 30.5 ppm. If it is assumed that calculated diamagnetic shielding constant is 
accurate, then the paramagnetic contribution would be - 65.0 ppm. A relationship 
between the proton spin rotation coupling constants and the paramagnetic 
shielding has been given by Flygare [13]. According to Flygare we may write: 

e 2 hc 2M k2 
a~'v[k]= 6mc 2 2e#,g k G~ G z 2~'zz(rk)-Xt 

where #, is the nuclear magneton, z~ is the charge on the lth nucleus and the sum- 
mation is over all nuclei I but not including k. Using the above relationship and the 
coupling constants 

H __ H__ Mxx-  17.98191, M z z -  17.0277 Kc/sec 

of Kukolich [14], and the rotational constants 

Gx = 28.31333, G~ = 18.57516 Mc/sec 

of Benedict and Pyler [15], the experimental value for the paramagnetic shielding 
at the proton in NH3 was calculated as - 64.5 ppm. This results in a diamagnetic 
shielding of 95.0 ppm, and compares very favourably with the calculated dia- 
magnetic shielding. This agreement is not surprising in the light of the accuracy 
of other SCF calculations [5, 6] with even smaller and less complete basis sets. 
Also, because the Urn operator is part of the Hamiltonian, it could be assumed that 
the potential is well represented by an SCF wavefunction. This assumption was 
confirmed by the negligible change in potential when correlation was included in 
the wavefunction. 

Electric Field 

The electric fields of both NH 3 and CH~, as calculated from the SCF and CI 
wavefunctions, are shown in Table 5. Although the calculated electric field cannot 
be related to experimentally measurable quantitites, the accuracy of the computed 
field can be ascertained by computing the force F N on a nucleus N of a molecule 
in a stationary state 

= -- [fN + fiN] 
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Table 5. Components of  the electric field ~ on a nucleus, E [X], for N H  3 and CH~ as calculated from the 
SCF and CI wavefunctions 

Molecule E[X]~ E[H]z 

XH3 Nuclear Electronic Total Nuclear Electronic Total 

N H  3 SCF 0.3089 -0 .2500  0.0589 -0 .7207  0.7223 0.0016 
CI 0,3089 -0 .2495  0.0594 -0 .7207  0.7183 -0 .0024  

CH~ SCF 0.2739 -0 .2382  0.0357 -0 .5477  0.5465 -0 .0012  
CI 0,2739 -0 .2352  0.0386 - 0.5477 0.5409 -0 .0068 

a In au, 1 au =0.823770 x 10 -2  dynes. 

where fN is the HeUmann-Feynmann force [16] and the residual (5) is zero for 
both a Hartree-Fock and an exact wavefunction. 

For an XH3 molecule at equilibrium geometry, Fx + ~ Fr~, equals zero by 

definition. Thus 
3 3 

ix  + E Y., = - [Sx + E aH,] 
i = l  i = 1  

fxI-I3 ~-~ - -  (~XH3 

and the sum of the Hellmann-Feynmann forces on all the nuclei is a direct measure 
of the sum of all of the residuals and thus of the accuracy of the wavefunction. 
These Hellmann-Feynmann sums, as computed from the respective SCF and CI 
electric field values, were 3.43 x 10 -3 and 3.36 x 10 -3 dynes for N H  3 and 
1.73 x 10 - 3  and 1.50 x 10 -3 dynes for CH~. All the above sums appear to be 
small, however, since few previous calculations have computed these forces, no 
absolute comparisons can be made. It is hoped that in the future these results 
might be useful as a standard of comparison. 

Quadrupole Coupling Constants 

The computed elements of the electric field gradient tensor (q) are given in 
Table 6 for the heavy atoms, and in Table 7 for the deuterons. The field gradients 
for the deuterons are given in the principal axis system which diagonalizes the 
field gradient tensor (X, Y', Z' for D in NH2D and CH2D-, and X, Y, Z for N 

Table 6. Field gradient a at nitrogen in NH 3 and at carbon in CH 3 

qxx qrr qzz 
Nuclear Electronic Total Nuclear Electronic[Total Nuclear Electronic Total 

NHz(SCF ) -0 .1229 -0 .4267  -0 .5496  -0 .1229  -0 .4267  ] -0 .5496  0.2459 0.8535 1.099. 
NH3(CI ) -0 .1229 -0 .4603  -0 .5832  -0 .1229  -0 .4603 -0 .4603  0.2458 0.9206 1.166 

CH~(SCF) -0 .0859 -0 .0989  -0 .1843  -0 .0859 -0 .0989  -0 ,1843 0.1719 0.1698 0.368 
CH~-(CI) -0 .0859 -0 .1040  -0 .1899  -0 .0859  -0 .1040  -0 .1899  0.1719 0.2081 0.380 

a In au, 1 au=0.324123 x 1016 esu/cm a. 
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Table 7. Fie ld  gradien t  ~' b at  h y d r o g e n  (deu t e ron )  in NH3(NH2D) and CHa(CH2D-  ) 

Molecule q x x  qr,r,  qz,z,  tl ~ ~ d 

Nuclear 1.0169 -2 .0643 1.0474 0.1328 0.61 ~ 
NH3 (SCF) Electronic -0 .8291 1.6312 -0 .8022  

Total  0.1878 -0 .4331 0.2453 

Nuclear 1.0169 -2 .0643 1.0475 0.1281 0.64 ~ 
NH3(CI  ) Electronic -0 .8264  1.6275 -0 .8010  

Total 0.1904 -0 .4368  0.2464 

Nuclear 0.6709 - 1.3641 0.6931 0.1519 1.73 ~ 
CH; (SCF)  Electronic -0 .5346  1.0428 -0 .5081 

Total 0.1362 -0 .3219 0.1850 

Nuclear 0.6709 - 1.3641 0.6932 0.1482 1,75 ~ 
CH3(GI) Electronic -0 .5351 1.0452 -0 .5101 

Total 0.1350 - 1.3189 0.1831 

In au, 1 au = 0.324123 x 1016 esu/cm 3. 
b In principal axis system IX, Y', Z '] .  

rl = (qxx  - qr ' r ' ) /qz ' z ' .  
a c~ is the angle between the NH(CH) bond and the A axis (see Fig. 1). 

Z 
Z" 

f 
N ~ Y  

Fig. 1. Principal axes (X, Y and Z) of the 14N field gradient tensor (the X axis, not  shown, forms a 
dextral system with Y and Z); the X, Y' and Z '  axes are the principal axes of the deuteron field gradient 

tensor. The Y - N - D  angle is 22.14 ~ and the values of ~ are given in Table 7 

and C in these molecules). These co-ordinate systems are shown in Fig. 1. The 
asymmetry parameter,  r/, was defined as: 

r I = ( q ~  - q ~ ) / q ~ .  

The labels of the principal axes (a, fl and ?) have been chosen such that [qr~] > [qaa 
-G~]. For  the present cases a = X, fl = Y' and 7 = Z'.  

The calculated field gradients can be utilized in two manners. First, if the exact 
nuclear quadrupole moment  of a nucleus is known, the accuracy of the theoretically 
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calculated field gradient can be determined by comparing the calculated nuclear 
quadrupole coupling constant (eQq/h) to the experimentally measured value. The 
presently calculated I4N and deuteron (D) coupling constants for NH 3 are tabu- 
lated in Table 8. In this table, the quadrupole moment of the deuteron was taken 
as 0.2796 [17], and the quadrupole moment of the 14N nucleus was taken as 
1.47 [18] and 1.56 [19] where all were in units of 10 -26 e.cm 2. The second manner 
of utilizing the computed field gradient is to combine this calculated field gradient 
with the experimentally determined quadrupole coupling constants in order to 
arrive at a value for the nuclear quadrupole moment (Q). The nuclear quadrupole 
moments calculated for and prior to this research are shown in Table 9. 

The deuteron coupling constants of the CI wavefunction, calculated in an axis 
system (X, Y", Z") where the ND bond formed the Y" axis, were as follows: 
(eQq/h)r,,r,, =288.7 and (eQq/h)z,, z . . . .  158.6 kc/sec. The resulting asymmetry 
parameter (t/) was 0.117. When the 14N quadrupole moment (Q14N) was taken 

Table 8. Quadrupole coupling constants for t * N H 2 D  

Calc (eQq/h)D a (eQq/h)N b,~ ( e Q q / h )  b'a 

X X  e Y ' Y ' f  Z ' Z '  tl g Z Z  ~ Z Z  e 

S C F  - 123.4 284.5 - 161.2 0.135 - 3.80 - 4.03 
C I  - 125.1 287.0  - 161.9 0.128 - 4 . 0 3  - 4 . 2 8  
Kern h - 1 5 1 . 4  339 - 1 8 8  0.11 - 4 . 2 0  

Harrison i - 134.7 304.9 - 170.2 0 .116 - 3.49 
E x p t  282  J 0 ~ - 4.08 ~ 

a In  kilocycles per second. 
b In  megacycles per second. 
c Q = 1.47 • 10 - 2 6  e c m  2. 

d Q = 1.56 • 10 -26  e c m  2. 

e X,  Y and Z are the principal axes of the 14N quadrupole coupling constant tensor, see figure. 
r X ,  Y' a n d  Z '  are the principal axes of the deuteron quadrupole coupling constant tensor, 

see Fig. 1. 

g t 1 = [ ( e Q q / h ) x  x - ( e a q / h ) z , z , ] / ( e Q q / h ) r , r , .  
h K e r n ,  C . W . :  J. chem. Physics 46, 4543 (1967). 

i Ref. [5 ] .  
J T h a d d e u s ,  P., K r i s h n e r ,  L. C., Cahi l l ,  P. : J .  chem. Physics 41, 1542 (1964). 
k Ref. [14] .  

Table 9. Nuclear electric quadrupole moment (Q) o f  14N  

Computed Total Q x 1026 

wavefunction energy (e c m  2) 

K a l d o r  and ShavitC S T O  - 5 6 . 0 9 9  1.36 
O ' K o n s k i  a n d  T. -K.  H a  b - 5 6 . 1 6 9  1.51 

Present S C F  - 56.212 1.58 
Present CI value - 56.375 1.49 
Suggested value ~ 1.56 

a K a l d o r ,  U.,  Shavi t t ,  I.: J. chem. Physics 45, 888 (1966). 
b Ref. [19] .  

Ref. [7]. 
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as 1.56 x l 0  - 2 6  cm 2 (but not when taken as 1.47 x 10 - 2 6  cm2), the SCF wave- 
function produced a more exact 14N coupling constant than did the CI wave- 
function, even though the CI wavefunction was more accurate for all other 
properties. One explanation for this improbable  situation is that the suggested 
14N quadrupole moment  (1.56) is in reality too high but nevertheless suitable 
for SCF calculations. 

Mulliken Populations 

The electron population on the atoms, computed from a Mulliken population 
analysis of the SCF and CI wavefunctions, are shown for all molecules in Table 10. 
It  is interesting to note that in this table, the hydrogen atoms of CH~ possess an 
excess of negative charge, and that  this negative has been decreased by the CI 
calculation. But, an SCF calculation by Millie and Berthier [20], using a larger 
[-6, 4, 2/3, 1] basis set, indicated an excess of positive charge on the hydrogens. It  
appears that like the barrier height, the electron populations are very dependent 
on the basis set and similarly of only qualitative accuracy. 

Table 10. Gross electron populations 

Atom NH 3 CH 3 
SCF CI SCF CI 

[X] a 7.7801 7.7686 6.9470 6.9603 
[H] 0.7399 0.7440 1.0177 1.0132 

a Atom IX] is the heavy atom N or C. 

Conclusions 

Only the diamagnetic contributions to the one-electron properties were 
calculated in this research because the CI secular problem was solved only for the 
ground state wavefunction. Considering the small differences in the CI and SCF 
computed values, it appears that  single configuration wavefunctions do yield 
accurate one-electron expectation values, and that the work necessary to improve 
these expectation values is not always comensurate with the results. However, 
considering that  a single CI  calculation with 1000 configurations takes less than 
6 hours of 7094-II computat ion time, the above, does not argue with the fact that 
the method of configuration interaction has been a reasonably efficient and 
effective method of lowering the energy to within 50 % of the theoretical limit. 
Hopefully, this energy lowering indicates a concomittant  improvement  in the 
wavefunction itself. 
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